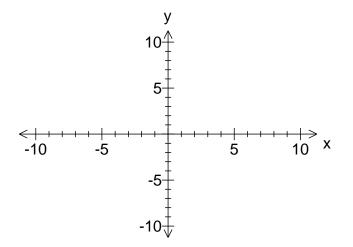

Linear Systems

- 1. Which system has exactly one solution?
 - A. y = -4x 2 y = -4x + 5B. 6x - 3y = -1 -2x + y = 4C. $\frac{1}{3}x + \frac{1}{2}y = 2$ $\frac{1}{6}x + y = \frac{5}{2}$ D. y = 3x - 2y = 3x + 2
- 2. What is the solution to the system graphed?

- 3. What is the solution to the system of equations $\begin{cases} y = 2x 1 \\ y = -x + 5 \end{cases}$
- 4. In which system of equations are the equations parallel?

A.
$$\begin{cases} 2x - y = 3 \\ x + 2y = 3 \end{cases}$$
 B. $\begin{cases} x - y = 10 \\ x + y = 10 \end{cases}$ C. $\begin{cases} 2x + 3y = 5 \\ 6x + 9y = 1 \end{cases}$ D. $\begin{cases} y = 3x - 1 \\ y = -3x + 2 \end{cases}$


5. Solve each linear system algebraically.

a) −3 <i>x</i> − 6 <i>y</i> = 9	b) 3x - 4y = 13	c) $\frac{1}{2}x - \frac{1}{3}y = \frac{5}{12}$
2x + 2y = -4	5x + 3y = 12	$\frac{5}{6}x + \frac{1}{2}y = \frac{1}{6}$

6. a) Write a linear system to model this situation: Every time Joe goes to the cafeteria he buys a soup for \$1.75 or pizza for \$4.75. During the year he spent \$490 and bought 160 food items.

- b) How many of each item did he buy? Solve this problem algebraically.
- 7. Solve the system by graphing. 2x + y = -3

3x - 2y = 2

