1. Solve by elimination.

A).
$$x + 2y = 9$$

 $2x - y = 9$

B).
$$4x + 3y - 5 = 0$$

 $2x - y = -5$

Solution (5.4, 1.8)

Solution (-1, 3)

C).
$$5x + 7y = 1$$

 $4x - 2y = 16$

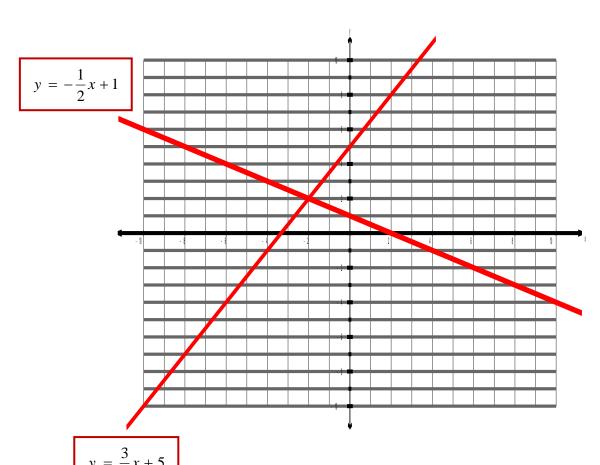
D).
$$5x + 3y + 21 = 0$$

 $9x + 7y + 41 = 0$

Solution (3, -2)

Solution (-3, -2)

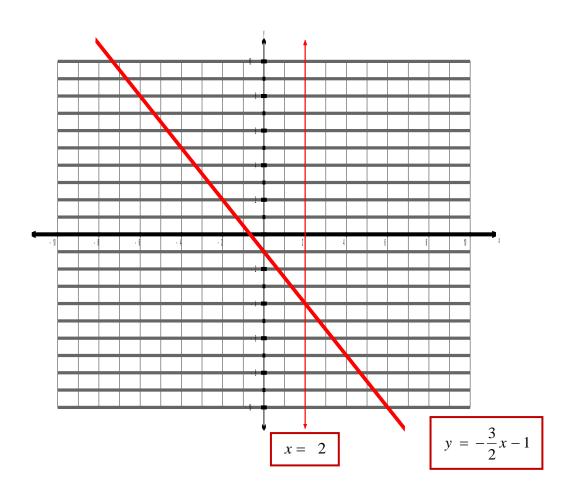
2. Solve by graphing.


A).
$$x + 2y = 2$$

$$3x - 2y = -10$$

Slope-intercept form: $y = -\frac{1}{2}x + 1$

$$y = \frac{3}{2}x + 5$$


Solution: (-2,2)

B).
$$3x + 2y = -2$$
$$x = 2$$

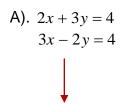
Slope-intercept form:
$$y = -\frac{3}{2}x - 1$$

 $x = 2$

Solution: (2, -4)

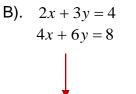
3. Solve using a method of your choice.

A)
$$\frac{7}{2}x + \frac{10}{4}y = 17$$

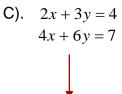

$$-\frac{3}{2}x - \frac{15}{2}y = -33$$

B).
$$3x - 2y = 4$$

 $-4y = -6x + 8$


Solution: (2, 4)

Coincident Lines Infinite Solutions!


4. Determine the number of solutions of each system.

One Solution
Perpendicualr Lines

Infinite Solutions Coincident Lines

No Solution Parallel Lines

5. Create a linear system to model this situation:

"A school raised \$140 by collecting 2000 items for recycling. The school received 5 cents for each can and 10 cents for each bottle."

$$c + b = 2000$$

$$0.05c + 0.10b = 140$$

b). Using a method of your choice, solve the linear system to determine the number of cans and the number of bottles were recycled.

Solution: 800 bottles and 1200 cans